International Journal of Research in Advent Technology, Vol.6, No.12, December 2018

Bipolar Pythagorean Fuzzy Sets and Their Application Based on Multi-Criteria Decision Making Problems

K. Mohana ${ }^{1}$, R. Jansi ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore.
${ }^{2}$ Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore. Email: riyaraju1116@gmail.com ${ }^{1}$,mathematicsgasc@gmail.com ${ }^{2}$.

Abstract

In this paper, we introduce a new concept of bipolar Pythagorean fuzzy set (BPFS) and some of its operations. Also, we propose score and accuracy functions to compare the bipolar Pythagorean fuzzy sets. Further we discuss bipolar Pythagorean fuzzy weighted average operator (A_{w}) and bipolar Pythagorean fuzzy weighted geometric operator $\left(G_{w}\right)$ to aggregate the bipolar Pythagorean fuzzy information. Finally, we apply these operators to deal with multi-criteria decision making approach by using the bipolar Pythagorean fuzzy numbers.

Keywords: Pythagorean fuzzy set, bipolar Pythagorean fuzzy set, average operator, geometric operator, score, accuracy functions and multi-criteria decision making.

1. INTRODUCTION

Fuzzy sets were introduced by Zadeh [26] and he discussed only membership function.After the extensions of fuzzy set theory Atanassov [4] generalized this concept and introduced a new concept called intuitionistic fuzzy set (IFS). K.Atanassov [4,5,6,7] presented the idea of IFS. Gau and Buehrer [14] familiarized the concept of another set called vague set. Burilo and Bustin [9] developed a relation between the two famous sets called vague set and IFS. They also mathematically proved that these sets are equivalent. Yager [22] familiarized the model of Pythagorean fuzzy set. The most important and central research topic is aggregation operators. There are many scholars worked in this area and introduced several operators. IFS has its greatest use in practical multiple attribute decision making (MADM) problems, and the academic research have achieved great development [22,24,25].However, in the some practical problems, the sum of membership degree and non-membership degree to which an alternative satisfying an attribute provided by decision maker(DM) may be bigger than 1 , but their square sum is less than or equal tol.
Bosc and Pivert [8] said that "Bipolarity refers to the propensity of the human mind to reason and make decisions on the basis of positive and negative effects. Positive information states what is possible, satisfactory, permitted, desired, or considered as being acceptable. On the other hand, negative statements express what is impossible, rejected, or forbidden. Negative preferences correspond to
constraints, since they specify which values or objects have to be rejected (i.e., those that do not satisfy the constraints), while positive preferences correspond to wishes, as they specify which objects are more desirable than others (i.e., satisfy user wishes) without rejecting those that do not meet the wishes." Therefore, Lee $[17,18]$ introduced the concept of bipolar fuzzy sets which is an generalization of the fuzzy sets. Recently, bipolar fuzzy models have been studied by many authors on algebraic structures such as; Chen et. al. [10] studied of m-polar fuzzy set. Then, they examined many results which are related to these concepts can be generalized to the case of m-polar fuzzy sets. They also proposed numerical examples to show how to apply m-polar fuzzy sets in real world problems.
In this paper, we introduce the concept of bipolar Pythagorean fuzzy sets which is an extension of the fuzzy sets,bipolar fuzzy sets,intuitionistic fuzzy sets and Pythagorean fuzzy sets. Also, we give some operators and operators on the bipolar Pythagorean fuzzy sets. We discuss the some operators based on BPFWA and BPFGA operators. We develop a bipolar Pythagorean fuzzy multiple criteria decisionmaking approach, in which the evaluation values of alternatives on the attributes take the form of bipolar Pythagorean fuzzy numbers to select the most desirable one(s) and give a numerical example.

2. PRELIMINARIES
 Definition 2.1[26]

Available online at www.ijrat.org

Let X be a non-empty set and I the unit interval $[0,1]$. A PF set S is an object having the form $\quad P=\left\{\left\langle x, \mu_{P}(x), v_{P}(x)\right\rangle: x \in X\right\}$ where the functions $u_{P}: X \rightarrow[0,1]$ and $v_{P}: X \rightarrow[0,1]$ denote respectively the degree of membership and degree of non-membership of each element $x \in X$ to the set P , and $0 \leq\left(\mu_{P}(x)\right)^{2}+\left(v_{P}(x)\right)^{2} \leq 1$ for each $x \in X$.

Definition 2.2[26]

Let X be a nonempty set and I the unit interval $[0,1]$. A PF sets P_{1} and P_{2} be in the form $P_{1}=\left\{\left\langle x, \mu_{P_{1}}(x), v_{P_{1}}(x)\right\rangle: x \in X\right\}$ and $P_{2}=$ $\left\{\left\langle x, \mu_{P_{2}}(x), v_{P_{2}}(x)\right\rangle: x \in X\right\}$.
Then

1) $P^{C}=\left\{\left\langle x, v_{P}(x), \mu_{P}(x)\right\rangle: x \in X\right\}$
2) $P_{1} \cup P_{2}=$
$\left\{\left\langle x, \max \left(\mu_{P_{1}}(x), \mu_{P_{2}}(x)\right), \min \left(v_{P_{1}}(x), v_{P_{2}}(x)\right)\right\rangle: x \in\right.$ $X\}$
3) $P_{1} \cap P_{2}=$
$\left\{\left\langle x, \min \left(\mu_{P_{1}}(x), \mu_{P_{2}}(x)\right), \max \left(v_{P_{1}}(x), v_{P_{2}}(x)\right)\right\rangle: x \in\right.$ $X\}$

Definition 2.3[26]

$$
\text { Let } P=\left(\mu_{P}, v_{P}\right), P_{1}=\left(\mu_{P_{1}}, v_{P_{1}}\right)
$$

and $P_{2}=\left(\mu_{P_{2}}, v_{P_{2}}\right)$, be three PFNs and $\lambda>0$, then their operations are defined as follows:

1) $P_{1} \oplus P_{2}=\left(\sqrt{\mu_{P_{1}}^{2}+\mu_{P_{2}}^{2}-\mu_{P_{1}}^{2} \mu_{P_{2}}^{2}}, v_{P_{1}} v_{P_{2}}\right)$
2) $P_{1} \otimes P_{2}=\left(\mu_{P_{1}} \mu_{P_{2}}, \sqrt{v_{P_{1}}^{2}+v_{P_{2}}^{2}-v_{P_{1}}^{2} v_{P_{2}}^{2}}\right)$
3) $\lambda P=\left(\sqrt{1-\left(1-\mu_{P}^{2}\right)^{\lambda}}, \mu_{P}^{\lambda}\right)$
4) $P^{\lambda}=\left(\mu_{P}^{\lambda}, \sqrt{1-\left(1-v_{P}^{2}\right)^{\lambda}}\right)$

Definition 2.4[26]
For any PFN the score function of P is defined as follows:

$$
S(P)=\mu_{P}^{2}(x)-v_{P}^{2}(x)
$$

where $S(P) \in[-1,1]$. For any two PFNs P_{1}, P_{2}, if $S\left(P_{1}\right)<S\left(P_{2}\right)$, then $P_{1}<P_{2}$. If $\quad S\left(P_{1}\right)>$ $S\left(P_{2}\right)$, then $\quad P_{1}>P_{2}$.If $\quad S\left(P_{1}\right)=S\left(P_{2}\right)$, then $P_{1} \sim P_{2}$.
Definition 2.5[26]
For any PFNs $P=\left(\mu_{P}, v_{P}\right)$, the accuracy function of A is defined as follows:

$$
a(P)=\mu_{P}^{2}(x)+v_{P}^{2}(x)
$$

where $a(P) \in[0,1]$.

3. BIPOLAR PYTHAGOREAN FUZZY SETS

 Definition 3.1Let X be a non-empty set. A bipolar
Pythagorean fuzzy set (BPFS) $A=\left\{\left(x,\left(T_{A}^{P}, F_{A}^{P}\right),\left(T_{A}^{N}, F_{A}^{N}\right)\right) \mid x \in X\right\}$ where $T_{A}^{P}: X \rightarrow$ $[0,1], \quad F_{A}^{P}: X \rightarrow[0,1], T_{A}^{N}: X \rightarrow[-1,0], F_{A}^{N}: X \rightarrow$ $[-1,0]$ are the mappings such that

$$
\begin{array}{r}
0 \leq\left(T_{A}^{P}(x)\right)^{2}+\left(F_{A}^{P}(x)\right)^{2} \leq 1 \\
\text { and }-1 \leq-\left(\left(T_{A}^{N}(x)\right)^{2}+\left(F_{A}^{N}(x)\right)^{2}\right) \leq 0
\end{array}
$$

and $T_{A}^{P}(x)$ denote the positive membership degree, $F_{A}^{P}(x)$ denote the positive non-membership degree, $T_{A}^{N}(x)$ denote the negative membership degree and $F_{A}^{N}(x)$ denote the negative nonmembership degree. The degree of indeterminacy
$\pi_{A}^{P}(x)=\sqrt{1-\left(T_{A}^{P}(x)\right)^{2}-\left(F_{A}^{P}(x)\right)^{2}}$ and
$\pi_{A}^{N}(x)=-\sqrt{1-\left(T_{A}^{N}(x)\right)^{2}-\left(F_{A}^{N}(x)\right)^{2}}$.
Definition 3.2
A is defined as follows:

$$
\begin{gathered}
S(A)=\frac{1}{2}\left(\left(T_{A}^{P}(x)\right)^{2}-\left(F_{A}^{P}(x)\right)^{2}+\left(T_{A}^{N}(x)\right)^{2}\right. \\
\left.-\left(F_{A}^{N}(x)\right)^{2}\right)
\end{gathered}
$$

where $S(A) \in[-1,1]$. For any two BPFNs A,B , if $S(A)<S(B)$, then $A<B$. If $\quad S(A)>$ $S(B)$, then $A>B$.If $S(A)=S(B)$, then $A \sim B$.

Definition 3.3

For any BPFNs
$A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right)$, the accuracy function of A is defined as follows:

$$
\begin{gathered}
a(A)=\frac{1}{2}\left(\left(T_{A}^{P}(x)\right)^{2}+\left(F_{A}^{P}(x)\right)^{2}+\left(T_{A}^{N}(x)\right)^{2}\right. \\
\left.+\left(F_{A}^{N}(x)\right)^{2}\right)
\end{gathered}
$$

where $a(A) \in[0,1]$.

Definition 3.4

Let $A=\left\{\left(x,\left(T_{A}^{P}, F_{A}^{P}\right),\left(T_{A}^{N}, F_{A}^{N}\right)\right): x \in X\right\}$
and $\quad B=\left\{\left(x,\left(T_{B}^{P}, F_{B}^{P}\right),\left(T_{B}^{N}, F_{B}^{N}\right)\right): x \in X\right\}$ be two
BPFSs, then their operations are defined as follows:
(1) $A \cup B$
$=\left\{\left(x, \max \left(T_{A}^{P}, T_{B}^{P}\right), \min \left(F_{A}^{P}, F_{B}^{P}\right), \min \left(T_{A}^{N}, T_{B}^{N}\right), \max \left(F_{A}^{N}, F_{B}^{N}\right)\right): x\right.$
$\in X\}$
(2) $A \cap B$
$=\left\{\left(x, \min \left(T_{A}^{P}, T_{B}^{P}\right), \max \left(F_{A}^{P}, F_{B}^{P}\right), \max \left(T_{A}^{N}, T_{B}^{N}\right), \min \left(F_{A}^{N}, F_{B}^{N}\right)\right): x\right.$
$\in X\}$
(3) $A^{C}=\left\{\left(x,\left(F_{A}^{P}, T_{A}^{P}\right),\left(F_{A}^{N}, T_{A}^{N}\right)\right): x \in X\right\}$

Definition 3.5
Let $A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right), \quad$ and
$B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)$, be two BPFNs and $\lambda>0$, then their operations are defined as follows:

Available online at www.ijrat.org

(1) $A \oplus B=$

Theorem 3.2
Let $\quad A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right)$, and $\binom{\left(\sqrt{\left(T_{A}^{P}\right)^{2}+\left(T_{B}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{B}^{P}\right)^{2}}, F_{A}^{P} F_{B}^{P}\right)}{,\left(-T_{A}^{N} T_{B}^{N},-\sqrt{\left(F_{A}^{N}\right)^{2}+\left(F_{B}^{N}\right)^{2}-\left(F_{A}^{N}\right)^{2}\left(F_{B}^{N}\right)^{2}}\right)} \begin{aligned} & B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right), \text { be two BPFNs and } \lambda> \\ & 0, \lambda_{1}>0, \lambda_{2}>0, \text { then, } \\ & (1)\left(A^{C}\right)^{\lambda}=(\lambda A)^{C} ;\end{aligned}$
(2) $A \otimes B=$
(2) $\lambda\left(A^{C}\right)=\left(A^{\lambda}\right)^{C}$;

$$
\binom{\left(T_{A}^{P} T_{B}^{P}, \sqrt{\left(F_{A}^{P}\right)^{2}+\left(F_{B}^{P}\right)^{2}-\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}}\right),}{\left(-\sqrt{\left(T_{A}^{N}\right)^{2}+\left(T_{B}^{N}\right)^{2}-\left(T_{A}^{N}\right)^{2}\left(T_{B}^{N}\right)^{2}},-F_{A}^{N} F_{B}^{N}\right)}
$$

(3) $A \cup B=B \cup A$;
(4) $A \cap B=B \cap A$;
(5) $\lambda(A \cup B)=\lambda A \cup \lambda B$;
(6) $(A \cup B)^{\lambda}=A^{\lambda} \cup B^{\lambda}$;
(7) $(A \ominus B)=\lambda A \ominus \lambda B$;
if $T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}$,
$T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N}$
(8) $(A \oslash B)^{\lambda}=A^{\lambda} \oslash B^{\lambda}$;
if $T_{A}^{P} \leq \min \left\{T_{B}^{P}, \frac{T_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}, F_{A}^{P} \geq F_{B}^{P}$,
$T_{A}^{N} \leq T_{B}^{N}, \quad F_{A}^{N} \geq \max \left\{F_{B}^{N}, \frac{F_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}$.
(9) $\lambda_{1} A \ominus \lambda_{2} A=\left(\lambda_{1}-\lambda_{2}\right) A$; if $\lambda_{1} \geq \lambda_{2}$;
(10) $A^{\lambda_{1}} \oslash A^{\lambda_{2}}=A^{\left(\lambda_{1}-\lambda_{2}\right)}$.

Proof:

In the following, we shall prove (1),(3),(5),(7),(9) and (2),(4),(6),(8),(10) can be proved analogously.
(1) $\left(A^{C}\right)^{\lambda}=\left(F_{A}^{P}, T_{A}^{P}, F_{A}^{N}, T_{A}^{N}\right)^{\lambda}=$

$$
\binom{\left(\left(F_{A}^{P}\right)^{\lambda}, \sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}}\right),}{\left(-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}},-\left(-T_{A}^{N}\right)^{\lambda}\right)}
$$

$B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)$ be two BPFNs, then
$(\lambda A)^{C}=$
$\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}},\left(F_{A}^{P}\right)^{\lambda}\right),}{\left(-\left(-T_{A}^{N}\right)^{\lambda},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}}\right)}^{C}$

$$
=\binom{\left(\left(F_{A}^{P}\right)^{\lambda}, \sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}}\right),}{\left(-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}},-\left(-T_{A}^{N}\right)^{\lambda}\right)}
$$

(3) $A \cup B=\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\}}{,\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}}$

$$
\begin{aligned}
& =\binom{\max \left\{T_{B}^{P}, T_{A}^{P}\right\}, \min \left\{F_{B}^{P}, F_{A}^{P}\right\},}{\min \left\{T_{B}^{N}, T_{A}^{N}\right\}, \max \left\{F_{B}^{N}, F_{A}^{N}\right\}} \\
& =B \cup A
\end{aligned}
$$

(5) $\lambda(A \cup B)=\lambda\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\}}{,\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}}$

$$
\begin{aligned}
& =\left(\begin{array}{c}
\left(\sqrt{1-\left(1-\max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}\right)^{\lambda}}, \min \left\{\left(F_{A}^{P}\right)^{\lambda},\left(F_{B}^{P}\right)^{\lambda}\right\}\right), \\
\left(\min \left\{-\left(-T_{A}^{N}\right)^{\lambda},-\left(-T_{B}^{N}\right)^{\lambda}\right\}-\sqrt{1-\left(1-\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}\right)^{\lambda}}\right)\left(\begin{array}{l}
\left.\left(\frac{\left(T_{A}^{N}\right)^{\lambda}}{\left(T_{B}^{N}\right)^{\lambda}}\right)^{2}+\left(\sqrt{1-\left(\frac{1-\left(F_{A}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}\right)^{\lambda}}\right)^{2}\right)
\end{array}\right) \geq-1 .
\end{array}\right. \\
& \lambda A \cup \lambda B=\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}},\left(F_{A}^{P}\right)^{\lambda}\right),}{\left(-\left(-T_{A}^{N}\right)^{\lambda},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}}\right)} \cup \\
& \binom{\left(\sqrt{1-\left(1-\left(T_{B}^{P}\right)^{2}\right)^{\lambda}},\left(F_{B}^{P}\right)^{\lambda}\right),}{\left(-\left(-T_{B}^{N}\right)^{\lambda},-\sqrt{1-\left(1-\left(F_{B}^{N}\right)^{2}\right)^{\lambda}}\right)} \\
& =\left(\binom{\max \left\{\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}}, \sqrt{1-\left(1-\left(T_{B}^{P}\right)^{2}\right)^{\lambda}}\right\},}{\min \left\{\left(F_{A}^{P}\right)^{\lambda},\left(F_{B}^{P}\right)^{\lambda}\right\}},\right. \\
& \left(\operatorname { m a x } \left\{-\sqrt{\min \left\{-\left(-T_{A}^{N}\right)^{\lambda},-\left(-T_{B}^{N}\right)^{\lambda}\right\},},\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\binom{\left(\sqrt{1-\left(1-\max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}\right)^{\lambda}}, \min \left\{\left(F_{A}^{P}\right)^{\lambda},\left(F_{B}^{P}\right)^{\lambda}\right\}\right),}{\left(\min \left\{-\left(-T_{A}^{N}\right)^{\lambda},-\left(-T_{B}^{N}\right)^{\lambda}\right\},-\sqrt{1-\left(1-\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}\right)^{\lambda}}\right)}\left(\begin{array}{l}
\left(\sqrt{\left.1-\left(\frac{1-\left(T_{A}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}\right)^{\prime}, \frac{\left(F_{A}^{P}\right)^{\lambda}}{\left.F_{B}^{P}\right)^{\lambda}}\right)^{2}}\right) \\
=\lambda(A \cup B) \\
\left(-\frac{\left(-T_{A}^{N}\right)^{\lambda}}{\left(-T_{B}^{N}\right)^{\lambda}},-\sqrt{1-\left(\frac{1-\left(F_{A}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}\right)^{\lambda}}\right)
\end{array}\right) \\
\text { (7) Since } T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} P_{A}^{P}}{\pi_{B}^{P}}\right\},
\end{array} \\
& \left.\begin{array}{l}
=\binom{\left(\sqrt{1-\left(1-\max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}\right)^{\lambda}}, \min \left\{\left(F_{A}^{P}\right)^{\lambda},\left(F_{B}^{P}\right)^{\lambda}\right\}\right),}{\left(\min \left\{-\left(-T_{A}^{N}\right)^{\lambda},-\left(-T_{B}^{N}\right)^{\lambda}\right\},-\sqrt{1-\left(1-\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}\right)^{\lambda}}\right)}
\end{array}\right)\left(\begin{array}{l}
\left(\sqrt{\left.1-\left(\frac{1-\left(T_{A}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}\right)^{\prime}, \frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right)^{2},}\right. \\
=\lambda(A \cup B) \\
\left(-\frac{\left(-T_{A}^{N}\right)^{\lambda}}{\left(-T_{B}^{N}\right)^{\lambda}},-\sqrt{1-\left(\frac{1-\left(F_{A}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}\right)^{\lambda}}\right)
\end{array}\right) \\
& T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N} . \\
& \begin{array}{l}
\text { we have } \quad F_{A}^{P} \pi_{B}^{P} \leq F_{B}^{P} \pi_{A}^{P} \\
\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}+\left(F_{A}^{P}\right)^{2}\left(\pi_{B}^{P}\right)^{2} \leq \underset{A}{\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}}+ \\
\left(\pi_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}
\end{array} \\
& \begin{array}{l}
\text { we have } \quad F_{A}^{P} \pi_{B}^{P} \leq F_{B}^{P} \pi_{A}^{P} \\
\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}+\left(F_{A}^{P}\right)^{2}\left(\pi_{B}^{P}\right)^{2} \leq\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}+ \\
\left(\pi_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}
\end{array} \\
& \left.=\left(\begin{array}{c}
\left(\sqrt{1-\left(1-\frac{\left(T_{A}^{P}\right)^{2}-\left(T_{B}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}\right)^{\lambda}}, \frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right.
\end{array}\right), ~\left(-\left(-\left(-\frac{T_{A}^{N}}{T_{B}^{N}}\right)\right)^{\lambda},-\sqrt{1-\left(1-\frac{\left(F_{A}^{N}\right)^{2}-\left(F_{B}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}\right)^{\lambda}}\right)\right) \\
& =\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}},\left(F_{A}^{P}\right)^{\lambda}\right),}{\left(-\left(-T_{A}^{N}\right)^{\lambda},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}}\right)} \\
& \Rightarrow \frac{\left(F_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}} \leq \frac{\left(F_{A}^{P}\right)^{2}+\left(\pi_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}+\left(\pi_{B}^{P}\right)^{2}} \\
& \Rightarrow\left(\frac{\left(F_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}}\right)^{\lambda} \leq\left(\frac{\left(F_{A}^{P}\right)^{2}+\left(\pi_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}+\left(\pi_{B}^{P}\right)^{2}}\right)^{\lambda} \\
& \Rightarrow 1-\left(\frac{(F)^{2}+\left(\pi_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}+\left(\pi_{B}^{P}\right)^{2}}\right)^{\lambda}+\left(\frac{\left(F_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}}\right)^{\lambda} \leq 1 \\
& \Rightarrow\left(\sqrt{1-\left(\frac{\left(F_{A}^{P}\right)^{2}+\left(\pi_{A}^{P}\right)^{2}}{\left(F_{B}^{P}\right)^{2}+\left(\pi_{B}^{P}\right)^{2}}\right)^{2}}\right)^{2}+\left(\frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right)^{2} \leq 1 \\
& \Rightarrow\left(\sqrt{1-\left(\frac{1-\left(T_{A}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}\right)^{\lambda}}\right)^{2}+\left(\frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right)^{2} \leq 1 . \\
& \text { Similarly } \\
& \ominus\binom{\left(\sqrt{1-\left(1-\left(T_{B}^{P}\right)^{2}\right)^{\lambda}},\left(F_{B}^{P}\right)^{\lambda}\right),}{\left(-\left(-T_{B}^{N}\right)^{\lambda},-\sqrt{1-\left(1-\left(F_{B}^{N}\right)^{2}\right)^{\lambda}}\right)} \\
& =\binom{\left(\sqrt{\frac{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda}-\left(1-\left(1-\left(T_{B}^{P}\right)^{2}\right)^{\lambda}\right)}{1-\left(1-\left(1-\left(T_{B}^{P}\right)^{2}\right)^{\lambda}\right)}}, \frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right),}{\left(-\frac{\left(-T_{A}^{N}\right)^{\lambda}}{\left(-T_{B}^{N}\right)^{\lambda}},-\sqrt{\frac{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda}-\left(1-\left(1-\left(F_{B}^{N}\right)^{2}\right)^{\lambda}\right)}{1-\left(1-\left(1-\left(F_{B}^{N}\right)^{2}\right)^{\lambda}\right)}}\right)} \\
& =\binom{\left(\sqrt{1-\left(\frac{1-\left(T_{A}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}\right)^{\lambda}}, \frac{\left(F_{A}^{P}\right)^{\lambda}}{\left(F_{B}^{P}\right)^{\lambda}}\right),}{\left(-\frac{\left(-T_{A}^{N}\right)^{\lambda}}{\left(-T_{B}^{N}\right)^{\lambda}},-\sqrt{1-\left(\frac{1-\left(F_{A}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}\right)^{\lambda}}\right)}
\end{aligned}
$$

Available online at www.ijrat.org

$$
\begin{aligned}
& =\lambda(A \ominus B) \text {. } \\
& \text { (9) Since } \lambda_{1} \geq \lambda_{2} \text {, then } \\
& \lambda_{1} A \ominus \lambda_{2} A \\
& =\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda_{1}}},\left(F_{A}^{P}\right)^{\lambda_{1}}\right),}{\left(-\left(-T_{A}^{N}\right)^{\lambda_{1}},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda_{1}}}\right)} \\
& \Theta\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda_{2}}},\left(F_{A}^{P}\right)^{\lambda_{2}}\right),}{\left(-\left(-T_{A}^{N}\right)^{\lambda_{2}},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda_{2}}}\right)} \\
& \left(\begin{array}{ll}
\left(\sqrt{\frac{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda_{1}}-\left(1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda_{2}}\right)}{1}} \frac{\left(F_{A}^{P}\right)^{\lambda_{1}}}{\left(A_{A}\right.}\right)
\end{array} \begin{array}{c}
\left(\sqrt{\left(F_{A}^{P}\right)^{2}+\left(F_{B}^{P}\right)^{2}-\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}}, T_{A}^{P} T_{B}^{P}\right), \\
\left(\begin{array}{l}
\left.-F_{A}^{N} F_{B}^{N},-\sqrt{\left(T_{A}^{N}\right)^{2}+\left(T_{B}^{N}\right)^{2}-\left(T_{A}^{N}\right)^{2}\left(T_{B}^{N}\right)^{2}}\right)
\end{array}\right) \\
A \otimes B)^{C}
\end{array}\right) \\
& \left.=\binom{\left(\sqrt{\left.\frac{1-\left(1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\lambda_{2}}\right)}{1-\left(1-\left(T_{A}\right.\right.}\right)}\left(\begin{array}{l}
\left(F_{A}^{P}\right)^{\lambda_{2}}
\end{array}\right),\right.}{\left(-\frac{\left(-T_{A}^{N}\right)^{\lambda_{1}}}{\left(-T_{A}^{N}\right)^{\lambda_{2}}},-\sqrt{\frac{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda_{1}}-\left(1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda_{2}}\right)}{1-\left(1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\lambda_{2}}\right)}}\right)}\left(\begin{array}{l}
\Delta B)^{C} \\
\left(T_{A}^{P} T_{B}^{P}, \sqrt{\left(F_{A}^{P}\right)^{2}+\left(F_{B}^{P}\right)^{2}-\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}}\right), \\
\left(-\sqrt{\left(T_{A}^{N}\right)^{2}+\left(T_{B}^{N}\right)^{2}-\left(T_{A}^{N}\right)^{2}\left(T_{B}^{N}\right)^{2}},-F_{A}^{N} F_{B}^{N},\right.
\end{array}\right)\right)^{c} \\
& =\binom{\left(\sqrt{1-\left(1-\left(T_{A}^{P}\right)^{2}\right)^{\left(\lambda_{1}-\lambda_{2}\right)}},\left(F_{A}^{P}\right)^{\left(\lambda_{1}-\lambda_{2}\right)}\right),}{\left(-\left(-T_{A}^{N}\right)^{\left(\lambda_{1}-\lambda_{2}\right)},-\sqrt{1-\left(1-\left(F_{A}^{N}\right)^{2}\right)^{\left(\lambda_{1}-\lambda_{2}\right)}}\right)} \\
& =\left(\lambda_{1}-\lambda_{2}\right) A \text {. } \\
& \text { Theorem } 3.3 \\
& \text { Let } A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right) \text {, and } \\
& B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right) \text {, be two BPFNs, then } \\
& \text { (1) } A^{C} \cup B^{C}=(A \cap B)^{C} \text {; } \\
& \text { (2) } A^{C} \cap B^{C}=(A \cup B)^{C} \text {; } \\
& \text { (3) } A^{C} \oplus B^{C}=(A \otimes B)^{C} \text {; } \\
& \text { (4) } A^{C} \otimes B^{C}=(A \oplus B)^{C} \text {; } \\
& \text { (5) } A^{C} \ominus B^{C}=(A \oslash B)^{C} \text {; if } T_{A}^{P} \leq \\
& \min \left\{T_{B}^{P}, \frac{T_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}, F_{A}^{P} \geq F_{B}^{P}, T_{A}^{N} \leq T_{B}^{N}, \quad F_{A}^{N} \geq \\
& \max \left\{F_{B}^{N}, \frac{F_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\} \\
& \text { (6) }(A \oslash B)=(A \ominus B)^{C} \text {; if } T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \\
& \min \left\{F_{B}^{P}, \frac{F_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}, \\
& T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N} . \\
& =\binom{\left(\sqrt{\left(F_{A}^{P}\right)^{2}+\left(F_{B}^{P}\right)^{2}-\left(F_{A}^{P}\right)^{2}\left(F_{B}^{P}\right)^{2}}, T_{A}^{P} T_{B}^{P}\right),}{\left(-F_{A}^{N} F_{B}^{N},-\sqrt{\left(T_{A}^{N}\right)^{2}+\left(T_{B}^{N}\right)^{2}-\left(T_{A}^{N}\right)^{2}\left(T_{B}^{N}\right)^{2}}\right)} \\
& =A^{C} \oplus B^{C} \text {. } \\
& \text { (5) Since if } T_{A}^{P} \leq \min \left\{T_{B}^{P}, \frac{T_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}, F_{A}^{P} \geq F_{B}^{P} \\
& T_{A}^{N} \leq T_{B}^{N}, \quad F_{A}^{N} \geq \max \left\{F_{B}^{N}, \frac{F_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, \\
& \text { we have } \\
& A^{C} \ominus B^{C}=\left(F_{A}^{P}, T_{A}^{P}, F_{A}^{N}, T_{A}^{N}\right) \ominus\left(F_{B}^{P}, T_{B}^{P}, F_{B}^{N}, T_{B}^{N}\right) \\
& \left.=\left(\begin{array}{c}
\left(\sqrt{\frac{\left(F_{A}^{P}\right)^{2}-\left(F_{B}^{P}\right)^{2}}{1-\left(F_{B}^{P}\right)^{2}}}, \frac{T_{A}^{P}}{T_{B}^{P}}\right.
\end{array}\right), ~\left(-\frac{F_{A}^{N}}{F_{B}^{N}},-\sqrt{\frac{\left(T_{A}^{N}\right)^{2}-\left(T_{B}^{N}\right)^{2}}{1-\left(T_{B}^{N}\right)^{2}}}\right)\right)
\end{aligned}
$$

Proof:
In the following, we shall prove (1),(3),(5) and (2), (4), (6) can be proved similarly.
(1) $A^{C} \cup B^{C}\left(F_{A}^{P}, T_{A}^{P}, F_{A}^{N}, T_{A}^{N}\right) \cup$

Available online at www.ijrat.org

$$
\begin{aligned}
(A \oslash B)^{C}= & \binom{\left(\frac{T_{A}^{P}}{T_{B}^{P}}, \sqrt{\frac{\left(F_{A}^{P}\right)^{2}-\left(F_{B}^{P}\right)^{2}}{1-\left(F_{B}^{P}\right)^{2}}}\right),}{\left(-\sqrt{\frac{\left(T_{A}^{N}\right)^{2}-\left(T_{B}^{N}\right)^{2}}{1-\left(T_{B}^{N}\right)^{2}},-\frac{F_{A}^{N}}{F_{B}^{N}}}\right)}^{C} \\
& =\binom{\left.\frac{\left(F_{A}^{P}\right)^{2}-\left(F_{B}^{P}\right)^{2}}{1-\left(F_{B}^{P}\right)^{2}}, \frac{T_{A}^{P}}{T_{B}^{P}}\right)}{\left(-\frac{F_{A}^{N}}{F_{B}^{N}},-\sqrt{\frac{\left(T_{A}^{N}\right)^{2}-\left(T_{B}^{N}\right)^{2}}{1-\left(T_{B}^{N}\right)^{2}}}\right)} \\
& =A^{C} \ominus B^{C}
\end{aligned}
$$

Theorem 3.4
Let $\quad A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right), \quad$ and $B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)$, be two BPFNs, then
(1) $(A \cup B) \oplus(A \cap B)=A \oplus B$;
(2) $(A \cup B) \otimes(A \cap B)=A \otimes B$;
(3) $(A \cup B) \ominus(A \cap B)=A \ominus B$; if $T_{A}^{P} \geq$ $T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}$,

$$
T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N}
$$

(4) $(A \cup B) \oslash(A \cap B)=A \oslash B$; if $T_{A}^{P} \leq$ $\min \left\{T_{B}^{P}, \frac{T_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}, F_{A}^{P} \geq F_{B}^{P}$

$$
T_{A}^{N} \leq T_{B}^{N}, \quad F_{A}^{N} \geq \max \left\{F_{B}^{N}, \frac{F_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}
$$ (2), (4) can be proved analogously. $(A \cup B) \ominus(A \cap B)$

$$
\begin{aligned}
& =\binom{\left(\sqrt{\frac{\left(T_{A}^{P}\right)^{2}-\left(T_{B}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}}}, \frac{F_{A}^{P}}{F_{B}^{P}}\right),}{\left(-\frac{T_{A}^{N}}{T_{B}^{N}},-\sqrt{\frac{\left(F_{A}^{N}\right)^{2}-\left(F_{B}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}}\right)} \\
& =A \ominus B
\end{aligned}
$$

$$
=A \ominus B
$$

Proof:

In the following, we shall prove (1), (3) and
(1) $(A \cup B) \oplus(A \cap B)=$

$$
\begin{array}{r}
\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\},}{\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}} \oplus \\
\binom{\min \left\{T_{A}^{P}, T_{B}^{P}\right\}, \max \left\{F_{A}^{P}, F_{B}^{P}\right\},}{\max \left\{T_{A}^{N}, T_{B}^{N}\right\}, \min \left\{F_{A}^{N}, F_{B}^{N}\right\}}
\end{array}
$$

(3) Since if $T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}$,
$T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N}$, then

Theorem 3.5

Let $A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right)$, and $B=\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)$, be two BPFNs, then (1) $(A \cup B) \cap B=B$;
(2) $(A \cap B) \cup B=B$;
(3) $(A \ominus B) \oplus B=A$,
if $T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} \pi_{A}^{P}}{\pi_{B}^{P}}\right\}$,
$T_{A}^{N} \geq \max \left\{\begin{array}{c}T_{B}^{N}, T_{B}^{N} \pi_{A}^{N} \\ \pi_{B}^{N}\end{array}\right\}, F_{A}^{N} \leq F_{B}^{N}$.

$$
\left(\begin{array}{cc}
-\min \left\{T_{A}^{N}, T_{B}^{N}\right\} \max \left\{T_{A}^{N}, T_{B}^{N}\right\}, & T_{A}^{N} \leq T_{B}^{N} \\
-\sqrt{\left.\left(\max \left\{F_{A}^{N}, F_{R}^{N}\right\}\right)^{2}+\left(\min \left\{F_{A}^{N}, F_{R}^{N}\right\}\right)^{2}-\left(\min \left\{F_{A}^{N}, F_{R}^{N}\right\}\right)^{2}\left(1 \operatorname{racod} \mathbb{F}_{A}^{N}, F_{R}^{N}\right\}\right)^{2}}
\end{array}\right) \quad F_{A}^{N} \geq \max \left\{F_{B}^{N}, \frac{F_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\} .
$$

$\binom{-\min \left\{T_{A}^{N}, T_{B}^{N}\right\} \max \left\{T_{A}^{N}, T_{B}^{N}\right\}, \quad T_{A}^{N} \leq T_{B}^{N}}{-\sqrt{\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}+\left(\min \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}-\left(\min \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}\left(\eta \bmod \left(\mathbf{F}_{A}^{N}, F_{B}^{N}\right\}\right)^{2}}} \quad F_{A}^{N} \geq \max \left\{F_{B}^{N}, \frac{F_{B} \pi_{A}}{\pi_{B}^{N}}\right\}$.

$$
=\binom{\left(\sqrt{\left(T_{A}^{P}\right)^{2}+\left(T_{B}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{B}^{P}\right)^{2}},-F_{A}^{P} F_{B}^{P}\right),}{\left(-T_{A}^{N} T_{B}^{N},-\sqrt{\left(F_{A}^{N}\right)^{2}+\left(F_{B}^{N}\right)^{2}-\left(F_{A}^{N}\right)^{2}\left(F_{B}^{N}\right)^{2}}\right)}
$$

In the following, we shall Prove (1),(3) and (2),(4) can be proved analogously.
(1) $(A \cup B) \cap B=\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\}}{,\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}}$

$$
=A \oplus B
$$

$\cap\left(\left(T_{B}^{P}, F_{B}^{P}\right),\left(T_{B}^{N}, F_{B}^{N}\right)\right)$

$$
\begin{aligned}
& =\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\},}{\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}} \\
& \ominus\binom{\min \left\{T_{A}^{P}, T_{B}^{P}\right\}, \max \left\{F_{A}^{P}, F_{B}^{P}\right\},}{\max \left\{T_{A}^{N}, T_{B}^{N}\right\}, \min \left\{F_{A}^{N}, F_{B}^{N}\right\}} \\
& =\binom{\sqrt{\frac{\max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}-\min \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}}{1-\min \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}}},}{\frac{\min \left\{F_{A}^{P}, F_{B}^{P}\right\}}{\max \left\{F_{A}^{P}, F_{B}^{P}\right\}}},
\end{aligned}
$$

$$
\left(-\sqrt{-\frac{\min \left\{T_{A}^{N}, T_{B}^{N}\right\}}{\max \left\{T_{A}^{N}, T_{B}^{N}\right\}}}, \begin{array}{c}
\frac{\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}-\left(\min \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}}{1-\left(\min \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}}
\end{array}\right)
$$

International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 E-ISSN: 2321-9637
Available online at www.ijrat.org

$$
\begin{aligned}
& =\left(\binom{\min \left\{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, T_{B}^{P}\right\},}{\max \left\{\min \left\{F_{A}^{P}, F_{B}^{P}\right\}, F_{B}^{P}\right\}},\right. \\
& \left.\binom{\max \left\{\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, T_{B}^{N}\right\},}{\min \left\{\max \left\{F_{A}^{N}, F_{B}^{N}\right\}, F_{B}^{N}\right\}}\right) \\
& =\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)=B . \\
& \text { (3) } \quad \text { Since } T_{A}^{P} \geq T_{B}^{P}, F_{A}^{P} \leq \min \left\{F_{B}^{P}, \frac{F_{B}^{P} T_{A}^{P}}{\pi_{B}^{P}}\right\} \text {, } \\
& T_{A}^{N} \geq \max \left\{T_{B}^{N}, \frac{T_{B}^{N} \pi_{A}^{N}}{\pi_{B}^{N}}\right\}, F_{A}^{N} \leq F_{B}^{N} \text {, then } \\
& (A \ominus B) \oplus B=\binom{\left(\sqrt{\frac{\left(T_{A}^{P}\right)^{2}-\left(T_{B}^{P}\right)^{2}}{1-\left(T_{B}^{P}\right)^{2}},}, \frac{F_{A}^{P}}{F_{B}^{P}}\right),}{\left(-\frac{T_{A}^{N}}{T_{B}^{N}},-\sqrt{\frac{\left(F_{A}^{N}\right)^{2}-\left(F_{B}^{N}\right)^{2}}{1-\left(F_{B}^{N}\right)^{2}}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right)=A \text {. } \\
& \begin{array}{l}
\text { Theorem 3.6 } \\
\text { Let } A=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right), B=
\end{array} \\
& \text { (} T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N} \text {) and } C=\left(T_{C}^{P}, F_{C}^{P}, T_{C}^{N}, F_{C}^{N}\right) \text { be three } \\
& \text { BPFNs, then } \\
& \text { (1) }(A \cup B) \cap C=(A \cap C) \cup(B \cap C) \text {; } \\
& \text { (2) }(A \cap B) \cup C=(A \cup C) \cap(B \cup C) \text {; } \\
& \text { (3) }(A \cup B) \oplus C=(A \oplus C) \cup(B \oplus C) \text {; } \\
& \text { (4) }(A \cap B) \oplus C=(A \oplus C) \cap(B \oplus C) \text {; } \\
& \text { (5) }(A \cup B) \otimes C=(A \otimes C) \cup(B \otimes C) \text {; } \\
& \text { (6) }(A \cap B) \otimes C=(A \otimes C) \cap(B \otimes C) \text {; } \\
& \text { Proof: } \\
& \text { In the following, we shall prove the (1),(3),(5) } \\
& \text { and (2),(4),(6) can be proved analogously. } \\
& =\left(\binom{\sqrt{\left(1-\left(T_{C}^{P}\right)^{2}\right) \max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}+\left(T_{C}^{P}\right)^{2}},}{\min \left\{F_{A}^{P} F_{C}^{P}, F_{B}^{P} F_{C}^{P}\right\}},\right. \\
& =\left(\binom{\max \left\{\min \left\{T_{A}^{P}, T_{C}^{P}\right\}, \min \left\{T_{B}^{P}, T_{C}^{P}\right\}\right\},}{\min \left\{\max \left\{F_{A}^{P}, F_{C}^{P}\right\}, \max \left\{F_{B}^{P}, F_{C}^{P}\right\}\right\}},\right. \\
& \left.\binom{\min \left\{\max \left\{T_{A}^{N}, T_{C}^{N}\right\}, \max \left\{T_{B}^{N}, T_{C}^{N}\right\}\right\},}{\max \left\{\min \left\{F_{A}^{N}, F_{C}^{N}\right\}, \min \left\{F_{B}^{N}, F_{C}^{N}\right\}\right\}}\right) \\
& =\binom{\left(\min \left\{T_{A}^{P}, T_{C}^{P}\right\}, \max \left\{F_{A}^{P}, F_{C}^{P}\right\}\right),}{\left(\max \left\{T_{A}^{N}, T_{C}^{N}\right\}, \min \left\{F_{A}^{N}, F_{C}^{N}\right\}\right)} \cup \\
& \binom{\left(\min \left\{T_{B}^{P}, T_{C}^{P}\right\}, \max \left\{F_{B}^{P}, F_{C}^{P}\right\}\right),}{\max \left\{T_{B}^{N}, T_{C}^{N}\right\}, \min \left\{F_{B}^{N}, F_{C}^{N}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\binom{\min \left\{-T_{A}^{N} T_{C}^{N},-T_{B}^{N} T_{C}^{N}\right\},}{\sqrt{\left(1-\left(F_{C}^{N}\right)^{2}\right)\left(\max \left\{F_{A}^{N}, F_{B}^{N}\right\}\right)^{2}+\left(F_{C}^{N}\right)^{2}}}\right) \\
& (A \oplus C) \cup(B \oplus C)= \\
& \binom{\left(\sqrt{\left(T_{A}^{P}\right)^{2}+\left(T_{C}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{C}^{P}\right)^{2}}, F_{A}^{P} F_{C}^{P}\right),}{\left(-T_{A}^{N} T_{C}^{N},-\sqrt{\left(F_{A}^{N}\right)^{2}+\left(F_{C}^{N}\right)^{2}-\left(F_{A}^{N}\right)^{2}\left(F_{C}^{N}\right)^{2}}\right)} u \\
& \text { (1) }(A \cup B) \cap C=\binom{\max \left\{T_{A}^{P}, T_{B}^{P}\right\}, \min \left\{F_{A}^{P}, F_{B}^{P}\right\},}{\min \left\{T_{A}^{N}, T_{B}^{N}\right\}, \max \left\{F_{A}^{N}, F_{B}^{N}\right\}} \\
& \binom{\left(\sqrt{\left(T_{B}^{P}\right)^{2}+\left(T_{C}^{P}\right)^{2}-\left(T_{B}^{P}\right)^{2}\left(T_{C}^{P}\right)^{2}}, F_{B}^{P} F_{C}^{P}\right),}{\left(-T_{B}^{N} T_{C}^{N},-\sqrt{\left(F_{B}^{N}\right)^{2}+\left(F_{C}^{N}\right)^{2}-\left(F_{B}^{N}\right)^{2}\left(F_{C}^{N}\right)^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{\sqrt{\left(1-\left(T_{C}^{P}\right)^{2}\right) \max \left\{\left(T_{A}^{P}\right)^{2},\left(T_{B}^{P}\right)^{2}\right\}+\left(T_{C}^{P}\right)^{2}},}{\min \left\{F_{A}^{P} F_{B}^{P}, F_{A}^{P} F_{B}^{P}\right\}}, \\
& \text { (} T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N} \text {) and } C=\left(T_{C}^{P}, F_{C}^{P}, T_{C}^{N}, F_{C}^{N}\right) \text { be three } \\
& \text { BPFNs, then } \\
& \text { (1) } A \cup B \cup C=A \cup C \cup B \text {; } \\
& \text { (2) } A \cap B \cap C=A \cap C \cap B \text {; } \\
& \left(\begin{array}{ll}
\min \left\{-T_{A}^{N} T_{C}^{N},-T_{B}^{N} T_{C}^{N}\right\}, & \text { (3) } A \oplus B \oplus C=A \oplus C \oplus B ; \\
\text { (4) } A \otimes B \otimes C=A \otimes C \otimes B ;
\end{array}\right.
\end{aligned}
$$

In the following, we shall prove the (1),(3) and (2),(4) can be proved analogously.
(1) $A \cup B \cup C=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right) \cup$
$\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right) \cup\left(T_{C}^{P}, F_{C}^{P}, T_{C}^{N}, F_{C}^{N}\right)$
$=\left(\binom{\max \left\{\max \left\{T_{A}^{P}, T_{C}^{P}\right\}, T_{B}^{P}\right\}}{,\min \left\{\min \left\{F_{A}^{P}, F_{C}^{P}\right\}, F_{B}^{P}\right\}}\right.$
$=$
$\left(\left(\sqrt{\min \left\{\left(F_{A}^{P}\right)^{2},\left(F_{B}^{P}\right)^{2}\right\}+\left(F_{C}^{P}\right)^{2}-\min \left\{\left(F_{A}^{P}\right)^{2},\left(F_{B}^{P}\right)^{2}\right\}\left(F_{C}^{P}\right)^{2}}\right)\right.$,
$\left.\binom{-\sqrt{\left(\min \left\{T_{A}^{N}, T_{B}^{N}\right\}\right)^{2}+\left(T_{C}^{N}\right)^{2}-\left(\min \left\{T_{A}^{N}, T_{B}^{N}\right\}\right)^{2}\left(T_{C}^{N}\right)^{2}}}{,-\max \left\{T_{A}^{N}, T_{B}^{N}\right\} T_{C}^{N}}\right)$
$=$
$\left(\left(\begin{array}{c}\max \left\{T_{A}^{P}, T_{B}^{P}\right\} T_{C}^{P}, \\ \left.\sqrt{\left(1-\left(F_{C}^{P}\right)^{2}\right) \min \left\{\left(F_{A}^{P}\right)^{2},\left(F_{B}^{P}\right)^{2}\right\}+\left(F_{C}^{P}\right)^{2}}\right),\end{array}\right.\right.$,
$\binom{-\sqrt{\left(1-\left(T_{C}^{N}\right)^{2}\right)\left(\min \left\{T_{A}^{N}, T_{B}^{N}\right\}\right)^{2}+\left(T_{C}^{N}\right)^{2}}}{,-\max \left\{T_{A}^{N}, T_{B}^{N}\right\} T_{C}^{N}}$
$(A \otimes C) \cup(B \otimes C)=$
$\binom{\left(T_{A}^{P} T_{C}^{P}, \sqrt{\left(F_{A}^{P}\right)^{2}+\left(F_{C}^{P}\right)^{2}-\left(F_{A}^{P}\right)^{2}\left(F_{C}^{P}\right)^{2}}\right)}{\left(-\sqrt{\left(T_{A}^{N}\right)^{2}+\left(T_{C}^{N}\right)^{2}-\left(T_{A}^{N}\right)^{2}\left(T_{C}^{N}\right)^{2}},-F_{A}^{N} F_{C}^{N}\right.} u$
$\binom{\left(T_{B}^{P} T_{C}^{P}, \sqrt{\left(F_{B}^{P}\right)^{2}+\left(F_{C}^{P}\right)^{2}-\left(F_{B}^{P}\right)^{2}\left(F_{C}^{P}\right)^{2}}\right)}{\left(-\sqrt{\left(T_{B}^{N}\right)^{2}+\left(T_{C}^{N}\right)^{2}-\left(T_{B}^{N}\right)^{2}\left(T_{C}^{N}\right)^{2}},-F_{B}^{N} F_{C}^{N}\right)}$
$\left.\left.\left.\begin{array}{l}\left.\quad\binom{\min \left\{\min \left\{T_{A}^{N}, T_{C}^{N}\right\}, T_{B}^{N}\right\},}{\max \left\{\max \left\{F_{A}^{N}, F_{C}^{N}\right\}, F_{B}^{N}\right\}}\right) \\ \operatorname{ax}\left\{\max \left\{T_{A}^{P}, T_{C}^{P}\right\}, T_{B}^{P}\right\},\end{array}\right), \begin{array}{l}\min \left\{\min \left\{T_{A}^{N}, T_{C}^{N}\right\}, T_{B}^{N}\right\}, \\ \max \left\{\max \left\{F_{A}^{N}, F_{C}^{N}\right\}, F_{B}^{N}\right\}\end{array}\right)\right), ~ \$$ $=\left(T_{A}^{P}, F_{A}^{P}, T_{A}^{N}, F_{A}^{N}\right) \cup\left(T_{C}^{P}, F_{C}^{P}, T_{C}^{N}, F_{C}^{N}\right) \cup$ $\left(T_{B}^{P}, F_{B}^{P}, T_{B}^{N}, F_{B}^{N}\right)$
(3) $A \oplus B \oplus C=$

$$
\begin{aligned}
& \binom{\left(\sqrt{\left(T_{A}^{P}\right)^{2}+\left(T_{B}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{B}^{P}\right)^{2}}, F_{A}^{P} F_{B}^{P}\right),}{\left(-T_{A}^{N} T_{B}^{N},-\sqrt{\left(F_{A}^{N}\right)^{2}+\left(F_{B}^{N}\right)^{2}-\left(F_{A}^{N}\right)^{2}\left(F_{B}^{N}\right)^{2}}\right)} \\
& \oplus\left(\left(T_{C}^{P}, F_{C}^{P}\right),\left(T_{C}^{N}, F_{C}^{N}\right)\right)
\end{aligned}
$$

Available online at www.ijrat.org

$$
\begin{aligned}
& {[0,1] \text { and } \sum_{j=1}^{n} \omega_{j}=1 \text {. }} \\
& =\quad \text { Theorem 3.9 } \\
& \binom{\left(\sqrt{\left(T_{A}^{P}\right)^{2}+\left(T_{C}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{C}^{P}\right)^{2}+\left(T_{B}^{P}\right)^{2}-\left(\left(T_{A}^{P}\right)^{2}+\left(T_{C}^{P}\right)^{2}-\left(T_{A}^{P}\right)^{2}\left(T_{C}^{P}\right)^{2}\right)\left(T_{t B a_{j}^{P}}^{2}\right.}=\right.}{F_{A}^{P} F_{C}^{P} F_{B}^{P}},\left(T_{j}^{P}, F_{j}^{P}, T_{j}^{N}, F_{j}^{N}\right)(j= \\
& 1,2, \ldots, n \text {) be a family of bipolar Pythagorean fuzzy }
\end{aligned}
$$

$=A \oplus C \oplus B$.
Let $a_{j}=\left(T_{j}^{P}, F_{j}^{P}, T_{j}^{N}, F_{j}^{N}\right)(j=$
$1,2, \ldots, n$) be a family of bipolar Pythagorean fuzzy
numbers. A mapping $A_{w}: \sigma_{n} \rightarrow \sigma$ is called bipolar
Pythagorean fuzzy weighted average operator if it
then, $G_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a$
ii. $\min _{j=1,2, \ldots, n}\left\{a_{j}\right\} \leq G_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq$
$\max _{j=1,2, \ldots, n}\left\{a_{j}\right\}$
iii.If $a_{j} \leq a_{j}^{\prime}$ for all $j=1,2, \ldots, n$ then,
$G_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq G_{w}\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

Definition 3.8

Definition 3.8

 satisfies$$
\begin{gathered}
A_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{j=1}^{n} a_{j}^{\omega_{j}} \\
\left(\sqrt{1-\prod_{j=1}^{n}\left(1-\left(T_{j}^{P}\right)^{2}\right)^{\omega_{j}}, \prod_{j=1}^{n}\left(F_{j}^{P}\right)^{\omega_{j}},}\right. \\
-\prod_{j=1}^{n}\left(-T_{j}^{N}\right)^{\omega_{j}},-\sqrt{1-\prod_{j=1}^{n}\left(1-\left(F_{j}^{N}\right)^{2}\right)^{\omega_{j}}}
\end{gathered}
$$

where ω_{j} is the weight of $a_{j}(j=1,2, \ldots, n), \omega_{j} \in$ $[0,1]$ and $\sum_{j=1}^{n} \omega_{j}=1$.
Theorem 3.8

$$
\text { Let } a_{j}=\left(T_{j}^{P}, F_{j}^{P}, T_{j}^{N}, F_{j}^{N}\right)(j=1,2, \ldots, n)
$$

be a family of bipolar Pythagorean fuzzy numbers.
Then,
i. If $a_{j}=a$ for all $\mathrm{j}=1,2, \ldots, \mathrm{n}$

$$
\text { then, } A_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a
$$

ii. $\min _{j=1,2, \ldots, n}\left\{a_{j}\right\} \leq A_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq$ $\max _{j=1,2, \ldots, n}\left\{a_{j}\right\}$
iii. If $a_{j} \leq a_{j}^{\prime}$ for all $j=1,2, \ldots, n$ then,

$$
A_{w}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leq A_{w}\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

Definition 3.9

$$
\text { Let } a_{j}=\left(T_{j}^{P}, F_{j}^{P}, T_{j}^{N}, F_{j}^{N}\right)(j=
$$

$1,2, \ldots, n$) be a family of bipolar Pythagorean fuzzy numbers. A mapping $G_{w}: \sigma_{n} \rightarrow \sigma$ is called bipolar Pythagorean fuzzy weighted average operator if it satisfies

4.BPFN-DECISION MAKING PROBLEM

In this section, we develop an approach based on the $A_{w}\left(\right.$ or $\left.G_{w}\right)$ operator and the above ranking method to deal with multiple criteria decision making problems with bipolar Pythagorean fuzzy information.
Suppose that $A=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\} \quad$ and $C=$ $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is the set of alternatives and criterions or attributes, respectively. Let $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}\right)^{T}$ be the weight vector of attributes, such that $\sum_{j=1}^{n} \omega_{j}=1, \omega_{j} \geq 0(j=1,2, \ldots, n)$ and ω_{j} refers to the weight of attribute C_{j}. An alternative on criterions is evaluated by the decision maker, and the evaluation values are represented by the form of bipolar Pythagorean fuzzy numbers.
Assume that $\left(a_{i j}\right)_{m \times n}=\left(T_{i j}^{P}, F_{i j}^{P}, T_{i j}^{N}, F_{i j}^{N}\right)_{m \times n}$.is the decision matrix provided by the decision maker; $a_{i j}$ is a bipolar Pythagorean fuzzy number for alternative A_{i} associated with the criterions C_{j}. We have the conditions $T_{i j}^{P}, F_{i j}^{P}, T_{i j}^{N}$ and $F_{i j}^{N} \in[0,1]$ such that $0 \leq\left(T_{i j}^{P}\right)^{2}+\left(F_{i j}^{P}\right)^{2}+\left(T_{i j}^{N}\right)^{2}+\left(F_{i j}^{N}\right)^{2} \leq 2$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$.
Now, we can develop an algorithm as follows:

Algorithm

Step 1. Construct the decision matrix provided by the decision maker as:
$\left(a_{i j}\right)_{m \times n}=\left(T_{i j}^{P}, F_{i j}^{P}, T_{i j}^{N}, F_{i j}^{N}\right)_{m \times n}$.
Step2.Compute
$a_{i}=A_{w}\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)\left(\operatorname{or} G_{w}\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)\right)$
for each $i=1,2, \ldots, m$.

International Journal of Research in Advent Technology, Vol.6, No.12, December 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

Step 3. Calculate the score values of $S\left(a_{i}\right)$ ($i=$ $1,2, \ldots, m)$ for the collective overall bipolar Pythagorean fuzzy number of $a_{i}(i=1,2, \ldots, m)$.
Step 4. Rank all the software systems of $a_{i}(i=$ $1,2, \ldots, m)$ according to the score values.
Now, we give a numerical example as follows:

Example 4.1

A customer who intends to buy a mobile. Four types of mobiles (alternatives) $A_{i}(i=1,2,3,4)$ are available.The customer takes into account four attributes to evaluate the alternatives; $C_{1}=$ Storage capacity, $C_{2}=$ Camera Pixel Quality, $C_{3}=$ Screen Size, $C_{4}=$ Battery Condition and use the bipolar Pythagorean fuzzy values to evaluate the four possible alternatives $A_{i}(i=1,2,3,4)$ under the above four attributes.Also, the weight vector of the attributes $\quad C_{j}(j=1,2,3,4) \quad$ is $\omega=(0.1,0.2,0.3,0.4)^{T}$.
Then,
Step 1. Construct the decision matrix provided by the customer as:
Table 1: Decision matrix given by customer

Alternatives	C_{1}	C_{2}	C_{3}	C_{4}
A_{1}	$(0.8,0.2)$	$(0.5,0.3)$	$(0.7,0.5)$	$(0.9,0.4)$
	$(-0.4,-$	$(-0.8,-$	$(-0.7,-$	$(-0.7,-$
	$0.9)$	$0.4)$	$0.2)$	$0.1)$
A_{2}	$(0.5,0.4)$	$(0.9,0.1)$	$(0.5,0.1)$	$(0.8,0.2)$
	$(-0.2,-$	$(-0.6,-$	$(-0.4,-$	$(-0.3,-$
	$0.7)$	$0.6)$	$0.6)$	$0.4)$
A_{3}	$(0.7,0.1)$	$(0.1,0.8)$	$(0.3,0.7)$	$(0.5,0.5)$
	$(-0.8,-$	$(-0.4,-$	$(-0.4,-$	$(-0.6,-$
	$0.4)$	$0.5)$	$0.5)$	$0.5)$
A_{4}	$(0.6,0.5)$	$(0.8,0.5)$	$(0.6,0.3)$	$(0.7,0.2)$
	$(-0.2,-$	$(-0.5,-$	$(-0.1,-$	$(-0.2,-$
	$0.8)$	$0.4)$	$0.7)$	$0.9)$

Step 2. Compute $a_{i}=A_{w}\left(a_{i 1}, a_{i 2}, a_{i 3}, a_{i 4}\right)$ for each $i=1,2,3,4$ as:

$$
\begin{aligned}
& a_{1}=(0.8010,0.3767,-0.6798,-0.4419) \\
& a_{2}=(0.7584,0.1516,-0.3607,-0.55) \\
& a_{3}=(0.4377,0.5173,-0.5042,-0.4914) \\
& a_{4}=(0.6922,0.2973,-0.1951,-0.7959)
\end{aligned}
$$

Step 3 .Calculate the score values of $S\left(a_{i}\right)(i=$ $1,2,3,4)$ for the collective overall bipolar Pythagorean fuzzy number of $a_{i}(i=1,2, \ldots, m)$ as:

$$
\begin{aligned}
& S\left(a_{1}\right)=0.3833 \\
& S\left(a_{2}\right)=0.1899 \\
& S\left(a_{3}\right)=-0.0316 \\
& S\left(a_{4}\right)=-0.1023
\end{aligned}
$$

Step 4. Rank all the software systems of $A_{i}(i=$ $1,2,3,4)$ according to the score values as:

$$
A_{1}>A_{2}>A_{3}>A_{4}
$$

and thus A_{1} is the most desirable alternative.

5. CONCLUSION

In this paper, we have introduced the notions of BPFS, BPFWA operator and BPFGA operator. We have also discussed some of their properties .Finally, a numerical example of the method was given to demonstrate the application.

REFERENCES

[1] S.E.Abbas,M.A.Hebeshi and I.M. Taha, On Upper and Lower Contra-Continuous Fuzzy Multifunctions,Punjab Univ.J.Math, 47 ,105117, 2017.
[2] M.Akramand,G.Shahzadi,Certain
Characterization of m-Polar Fuzzy Graphs by Level Graphs, PunjabUniv. J.Math, 49 ,1-12, 2017.
[3] M.Alamgir Khan and Sumitra, Common Fixed Point Theorems for Converse Commuting and OWC Maps in Fuzzy Metric Spaces, Punjab. Univ.J.Math, 44, 57-63, 2016.
[4] K.Atanassov,Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 87-96, 1986.
[5] K.Atanassov and G.Gargov, Interval-Valued Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems,31, 343-349, 1989.
[6] K.Atanassov,Norms and Metrics Over Intuitionistic Fuzzy Sets,BUSEFAL, 55 ,11-20, 1993.
[7] K.Atanassov,Intuitionistic Fuzzy Sets,Theory and Applications,Heidelberg:Physica-Verlag, (1999).
[8] P.Bosc,O.Pivert, On a Fuzzy Bipolar Relational
[9] Algebra, Information Sciences,219, 1-16, 2013.
[10]H.Bustine and P.Burillo,Vague Sets are Intuitionistic Fuzzy Sets,Fuzzy sets and Systems,79, 403-405, 1996.
[11]J.Chen,S.Li,S.Ma and X.Wang,m-Polar Fuzzy Sets:An Extension of Bipolar Fuzzy Sets,The ScientificWorldJournal,(2014) http://dx.doi.org/10.1155/2014/416530.
[12] S.M.Chen and J.M.Tan,Haldling Multi-criteria Fuzzy Decision Making Problems Based on Vague Set Theory,Fuzzy Sets and Systems, 67,163-172, 1994.
[13]F.Chiclana,E.Herrera-Viedma,F.Herrera and S.Alonso,Induced Ordered Weighted Geometric Operators and Their Use in the Aggregation of Multiplicative Preference Relations, International Journal of Intelligent Systems ,19, 233-255, 2004.
[14]F.Chiclana,E.Herrera-Viedma,F.Herrera and S.Alonso,Some Induced Ordered Weighted Averaging Operators and Their Use for Solving Group Decision-Making Problems Based on Fuzzy Preference Relations, European Journal of Operational Research, 182, 383-399, 2007.
[15]W.L.Gau and D.J.Buehrer,Vague Sets, IEEE Transactions on Systems, Man and Cybernetics, 23, 610-614, 1993.
[16] IrfanDeli,Mumtaz Ali,Florentin Smarandache, Bipolar Neutrosophic Sets and Their Application Based on Multi-Criteria Decision Making Problems, Internal Conference on Advanced mechatronic Systems, 22- 24, 1993.
[17] Khaista rahman,Asad Ali,Muhammad Sajjad Ali khan,Some Inter-Valued Pythagorean Fuzzy Weighted Averaging Aggregation Operators and Their Applications to Multiple Attribute Decision Making,Punjab Univ.Journal of Mathematics, 50,113-129, 2018.
[18] K.M.Lee,Bipolar-Valued Fuzzy Sets and their Operations, Proc.Int.Conf. on Intelligent Technologies, Bangkok, Thailand,, 307-312, 2000.
[19] K.M.Lee,Bipolar Fuzzy Subalgebras and Bipolar Fuzzy Ideals of BCK/BCI-Algebras,Bull.Malays.Math.Sci.Soc.,32/3,361373, 2009.
[20]Z.S.Xu and R.R.Yager,Some Geometric Aggregation Operators Based on Intuitionistic Fuzzy Sets, International Journal of General System, 35, 417-433, 2006.
[21] Xindong peng, Yong Yang ${ }^{*}$, Some Results for Pythagorean Fuzzy Sets, International Journal of Intelligent Systems, 30 , 1133-1160, 2015.
[22]Z.S.Xu,Induced Uncertain Linguistic OWA Operators Applied to Group Decision Making, Information Fusion, 7, 231-238, 2006a.
[23]R.R.Yager,Pythagorean Membership Grades in Multicriteria Decision Making,IEEE Trans.Fuzzy Syst., 22, 958-965, 2014.
[24]R.R.Yager,On Ordered Weighted Averaging Aggregation Operators in Multi-criteria Decision Making,IEEE Transactions on Systems, Man and Cybernetics, 18 ,183-190, 1988.
[25]R.R.Yager,A.M.Abbasov,Pythagorean Membership Grades ,Complex Numbers and Decision Making, International Journal of Intelligent Systems, 28 , 436-452, 2013.
[26]R.Yager,Pythagorean Fuzzy Subsets,In:Proc Joint IFSA World Congress and NAFIPS Annual Meeting,Edmonton,Canada,,57-61, 2013.
[27]Zadeh L.A, Fuzzy sets, Information and Control, $8,338-335,1965$.

